1. Gambert, S.R. and S. Pinkstaff, Emerging epidemic: diabetes in older adults: demography, economic impact, and pathophysiology. Diabetes Spectrum, 2006. 19(4): p. 221-228. [
DOI:10.2337/diaspect.19.4.221]
2. Schwartz, A.V., et al., Older women with diabetes have an increased risk of fracture: a prospective study. The Journal of clinical endocrinology & metabolism, 2001. 86(1): p. 32-38. [
DOI:10.1210/jcem.86.1.7139] [
PMID]
3. Qian, C., et al., High-fat diet/low-dose streptozotocin-induced type 2 diabetes in rats impacts osteogenesis and Wnt signaling in bone marrow stromal cells. PLoS One, 2015. 10(8): p. e0136390. [
DOI:10.1371/journal.pone.0136390] [
PMID] [
PMCID]
4. Cianferotti, L. and M.L. Brandi, Muscle-bone interactions: basic and clinical aspects. Endocrine, 2014. 45(2): p. 165-177. [
DOI:10.1007/s12020-013-0026-8] [
PMID]
5. Banitalebi, E., et al., Effects of sprint interval or combined aerobic and resistance training on myokines in overweight women with type 2 diabetes: A randomized controlled trial. Life sciences, 2019. 217: p. 101-109. [
DOI:10.1016/j.lfs.2018.11.062] [
PMID]
6. McCarthy, J.J., The MyomiR network in skeletal muscle plasticity. Exercise and sport sciences reviews, 2011. 39(3): p. 150. [
DOI:10.1097/JES.0b013e31821c01e1] [
PMID] [
PMCID]
7. Güller, I. and A.P. Russell, MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. The Journal of physiology, 2010. 588(21): p. 4075-4087. [
DOI:10.1113/jphysiol.2010.194175] [
PMID] [
PMCID]
8. Weilner, S., et al., Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone, 2015. 79: p. 43-51. [
DOI:10.1016/j.bone.2015.05.027] [
PMID]
9. Cao, Z., et al., MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PloS one, 2014. 9(5): p. e97098. [
DOI:10.1371/journal.pone.0097098] [
PMID] [
PMCID]
10. Frias, F.d.T., et al., MyomiRs as markers of insulin resistance and decreased myogenesis in skeletal muscle of diet-induced obese mice. Frontiers in endocrinology, 2016. 7: p. 76. [
DOI:10.3389/fendo.2016.00076] [
PMID] [
PMCID]
11. Forterre, A., et al., Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell cycle, 2014. 13(1): p. 78-89. [
DOI:10.4161/cc.26808] [
PMID] [
PMCID]
12. Peng, H., et al., MiR-133a inhibits fracture healing via targeting RUNX2/BMP2. Eur Rev Med Pharmacol Sci, 2018. 22(9): p. 2519-26.
13. Lee, J., D. Kim, and C. Kim, Resistance training for glycemic control, muscular strength, and lean body mass in old type 2 diabetic patients: a meta-analysis. Diabetes Therapy, 2017. 8(3): p. 459-473. [
DOI:10.1007/s13300-017-0258-3] [
PMID] [
PMCID]
14. Honda, A., et al., High-impact exercise strengthens bone in osteopenic ovariectomized rats with the same outcome as Sham rats. Journal of applied physiology, 2003. 95(3): p. 1032-1037. [
DOI:10.1152/japplphysiol.00781.2002] [
PMID]
15. Karp, N.A., et al., Applying the ARRIVE guidelines to an in vivo database. PLoS Biol, 2015. 13(5): p. e1002151. [
DOI:10.1371/journal.pbio.1002151] [
PMID] [
PMCID]
16. Krug, A.L., et al., High‐intensity resistance training attenuates dexamethasone‐induced muscle atrophy. Muscle & nerve, 2016. 53(5): p. 779-788. [
DOI:10.1002/mus.24906] [
PMID]
17. Zhang, M., et al., The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental diabetes research, 2008. 2008. [
DOI:10.1155/2008/704045] [
PMID] [
PMCID]
18. Liu, Z., et al., Antidiabetic effects of malonyl ginsenosides from Panax ginseng on type 2 diabetic rats induced by high-fat diet and streptozotocin. Journal of Ethnopharmacology, 2013. 145(1): p. 233-240. [
DOI:10.1016/j.jep.2012.10.058] [
PMID]
19. de Bem, G.F., et al., Antidiabetic effect of Euterpe oleracea Mart.(açai) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: A positive interaction. PLoS One, 2018. 13(6): p. e0199207. [
DOI:10.1371/journal.pone.0199207] [
PMID] [
PMCID]
20. Leandro, C.G., et al., A program of moderate physical training for Wistar rats based on maximal oxygen consumption. Journal of strength and conditioning research, 2007. 21(3): p. 751. [
DOI:10.1519/R-20155.1] [
PMID]
21. Singulani, M.P., et al., Effects of strength training on osteogenic differentiation and bone strength in aging female Wistar rats. Scientific reports, 2017. 7: p. 42878. [
DOI:10.1038/srep42878] [
PMID] [
PMCID]
22. de Cássia Marqueti, R., et al., Resistance training minimizes the biomechanical effects of aging in three different rat tendons. Journal of biomechanics, 2017. 53: p. 29-35. [
DOI:10.1016/j.jbiomech.2016.12.029] [
PMID]
23. Macedo, A.G., et al., Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle. The Journal of steroid biochemistry and molecular biology, 2014. 143: p. 357-364. [
DOI:10.1016/j.jsbmb.2014.05.010] [
PMID]
24. PITHON-CURI, T.N.C., Aprogram Of Moderate Physical Training For Wistar Rats Based On Maximal Oxygen Consumption. Journal of strength and conditioning research, 2007. 21(3): p. 000-000. [
DOI:10.1519/R-20155.1] [
PMID]
25. Nourshahi, M., et al., Effect of 8 weeks endurance training on serum vascular endothelial growth factor and endostatin in wistar rats. Koomesh, 2012. 13(4): p. 474-479.
26. Drummond, L.R., et al., Enhanced femoral neck strength in response to weightlifting exercise training in maturing male rats. International SportMed Journal, 2013. 14(3): p. 155-167.
27. Farsani, Z.H., et al., Effects of different intensities of strength and endurance training on some osteometabolic miRNAs, Runx2 and PPARγ in bone marrow of old male wistar rats. Molecular biology reports, 2019. 46(2): p. 2513-2521. [
DOI:10.1007/s11033-019-04695-w] [
PMID]
28. Simpson, K.A., et al., Graded Resistance Exercise And Type 2 Diabetes in Older adults (The GREAT2DO study): methods and baseline cohort characteristics of a randomized controlled trial. Trials, 2015. 16(1): p. 1-15. [
DOI:10.1186/s13063-015-1037-y] [
PMID] [
PMCID]
29. Kelley, G.A., K.S. Kelley, and Z.V. Tran, Resistance training and bone mineral density in women: a meta-analysis of controlled trials. 2001, LWW. [
DOI:10.1097/00002060-200101000-00017] [
PMID]
30. Aido, M.I.F.d., The influence of age and mechanical loading on bone structure and material properties. 2015, Technische Universität Berlin.
31. Cui, S., et al., Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Scientific reports, 2017. 7(1): p. 1-13. [
DOI:10.1038/s41598-017-02294-y] [
PMID] [
PMCID]
32. Boppart, M.D., et al., Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise. Frontiers in physiology, 2013. 4: p. 310. [
DOI:10.3389/fphys.2013.00310] [
PMID] [
PMCID]
33. Ogasawara, R., et al., MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiological genomics, 2016. 48(4): p. 320-324. [
DOI:10.1152/physiolgenomics.00124.2015] [
PMID]
34. Sawada, S., et al., Profiling of circulating microRNAs after a bout of acute resistance exercise in humans. PloS one, 2013. 8(7): p. e70823. [
DOI:10.1371/journal.pone.0070823] [
PMID] [
PMCID]
35. Aoi, W., et al., Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Frontiers in physiology, 2013. 4: p. 80. [
DOI:10.3389/fphys.2013.00080] [
PMID] [
PMCID]
36. Mayr, M., A. Zampetaki, and S. Kiechl, MicroRNA biomarkers for failing hearts? 2013, Oxford University Press. [
DOI:10.1093/eurheartj/eht261] [
PMID]
37. Davidsen, P.K., et al., High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. Journal of applied physiology, 2010. 110(2): p. 309-317. [
DOI:10.1152/japplphysiol.00901.2010] [
PMID]
38. Russell, A.P., et al., Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short‐term endurance training. The Journal of physiology, 2013. 591(18): p. 4637-4653. [
DOI:10.1113/jphysiol.2013.255695] [
PMID] [
PMCID]
39. Nielsen, S., et al., Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. The Journal of physiology, 2010. 588(20): p. 4029-4037. [
DOI:10.1113/jphysiol.2010.189860] [
PMID] [
PMCID]
40. Drummond, M.J., et al., Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. American Journal of Physiology-Endocrinology and Metabolism, 2008. 295(6): p. E1333-E1340. [
DOI:10.1152/ajpendo.90562.2008] [
PMID] [
PMCID]
41. Song, J., et al., Exercise altered the skeletal muscle microRNAs and gene expression profiles in burn rats with hindlimb unloading. Journal of Burn Care & Research, 2017. 38(1): p. 11-19. [
DOI:10.1097/BCR.0000000000000444] [
PMID] [
PMCID]
42. D'Souza, R.F., et al., MicroRNAs in muscle: characterizing the powerlifter phenotype. Frontiers in physiology, 2017. 8: p. 383. [
DOI:10.3389/fphys.2017.00383] [
PMID] [
PMCID]
43. Trumbull, A., G. Subramanian, and E. Yildirim-Ayan, Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells. Biomedical engineering online, 2016. 15(1): p. 43. [
DOI:10.1186/s12938-016-0150-9] [
PMID] [
PMCID]
44. Turner, C.H., Y. Takano, and I. Owan, Aging changes mechanical loading thresholds for bone formation in rats. Journal of Bone and Mineral Research, 1995. 10(10): p. 1544-1549. [
DOI:10.1002/jbmr.5650101016] [
PMID]
45. Razi, H., et al., Aging leads to a dysregulation in mechanically driven bone formation and resorption. Journal of Bone and Mineral Research, 2015. 30(10): p. 1864-1873. [
DOI:10.1002/jbmr.2528] [
PMID]
46. Qin, Y., et al., Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. Journal of Biological Chemistry, 2017. 292(26): p. 11021-11033. [
DOI:10.1074/jbc.M116.770941] [
PMID] [
PMCID]
47. Marinho, R., et al., Role of exosomal microRNAs and myomiRs in the development of cancer cachexia-associated muscle wasting. Frontiers in nutrition, 2018. 4: p. 69. [
DOI:10.3389/fnut.2017.00069] [
PMID] [
PMCID]
48. Mitchelson, K.R. and W.-Y. Qin, Roles of the canonical myomiRs miR-1,-133 and-206 in cell development and disease. World journal of biological chemistry, 2015. 6(3): p. 162. [
DOI:10.4331/wjbc.v6.i3.162] [
PMID] [
PMCID]