Volume 8, Issue 1 (Spring 2018)                   PTJ 2018, 8(1): 9-16 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifmoradi K, Kamali M, Tahmasebi A. Dynamic Balance During Gait in Children With Spastic Diplegic Cerebral Palsy Versus Normal Children. PTJ 2018; 8 (1) :9-16
URL: http://ptj.uswr.ac.ir/article-1-357-en.html
1- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
2- Department of Physiotherapy, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
3- Department of Occupational Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
Abstract:   (4842 Views)
Purpose: Cerebral Palsy (CP) can negatively affect dynamic stability in children with spastic diplegic Cerebral Palsy during walking. This condition results in a high risk of falling. There is limited evidence regarding the dynamic stability of children with Cerebral Palsy. Thus, this study aimed to investigate the dynamic stability of children with spastic diplegic Cerebral Palsy, compared to typically developed children during walking.
Methods: Sixteen children including 8 with spastic diplegic Cerebral Palsy and 8 normal ones with an age range of 5 to 8 years participated in this quasi-experimental study. A Qualysis motion analysis system capturing at a frequency of 100 Hz was used to record data. Qualysis software and Visual3D software were utilized for data extraction. Data analysis was conducted using  the Independent t-test with  P<0.05.
Results: The stride length and velocity of gait in children with Cerebral Palsy were 32.25 cm and 0.34 m/s lower than the normal children, respectively. Center of mass displacement was 12.25% lower in anteroposterior plane and 1.23% higher in mediolateral plane in children with Cerebral Palsy, compared to the normal children. The margin of stability was 1.72 cm higher in the children with Cerebral Palsy, compared to normal children.
Conclusion: The lower anteroposterior and higher mediolateral displacement of the center of mass result in an altered pattern of gait in children with Cerebral Palsy, compared to the normal children. Considering the aforementioned changes and the lower velocity of gait in children with Cerebral Palsy, the dynamic stability of children with spastic diplegic Cerebral Palsy is lower, compared to the normal children during walking.
Full-Text [PDF 592 kb]   (1728 Downloads) |   |   Full-Text (HTML)  (2410 Views)  
Type of Study: Research | Subject: Special
Received: 2018/08/28 | Accepted: 2018/10/29 | Published: 2019/02/19

References
1. Abel MF, Damiano DL. Strategies for increasing walking speed in diplegic Cerebral Palsy. Journal of Pediatric Orthopaedics. 1996; 16(6):753-8. [DOI:10.1097/01241398-199611000-00010] [DOI:10.1097/01241398-199611000-00010]
2. Johnson DC, Damiano DL, Abel MF. The evolution of gait in childhood and adolescent Cerebral Palsy. Journal of Pediatric Orthopaedics. 1997; 17(3):392-6. [DOI:10.1097/01241398-199705000-00022] [PMID] [DOI:10.1097/01241398-199705000-00022]
3. Bruijn SM, Millard M, Van Gestel L, Meyns P, Jonkers I, Desloovere K. Gait stability in children with Cerebral Palsy. Research in Developmental Disabilities. 2013; 34(5):1689-99. [DOI:10.1016/j.ridd.2013.02.011] [PMID] [PMCID] [DOI:10.1016/j.ridd.2013.02.011]
4. Kurz MJ, Arpin DJ, Corr B. Differences in the dynamic gait stability of children with Cerebral Palsy and typically developing children. Gait & Posture. 2012; 36(3):600-4. [DOI:10.1016/j.gaitpost.2012.05.029] [PMID] [DOI:10.1016/j.gaitpost.2012.05.029]
5. Hsue BJ, Miller F, Su FC. The dynamic balance of the children with Cerebral Palsy and typical developing during gait; Part I: Spatial relationship between COM and COP trajectories. Gait & Posture. 2009; 29(3):465-70. [DOI:10.1016/j.gaitpost.2008.11.007] [PMID] [DOI:10.1016/j.gaitpost.2008.11.007]
6. Hsue BJ, Miller F, Su FC. The dynamic balance of the children with Cerebral Palsy and typical developing during gait; Part II: Instantaneous velocity and acceleration of COM and COP and their relationship. Gait & Posture. 2009; 29(3):471-6. [DOI:10.1016/j.gaitpost.2008.11.008] [PMID] [DOI:10.1016/j.gaitpost.2008.11.008]
7. Wallard L, Dietrich G, Kerlirzin Y, Bredin J. Balance control in gait children with Cerebral Palsy. Gait & Posture. 2014; 40(1):43-7. [DOI:10.1016/j.gaitpost.2014.02.009] [PMID] [DOI:10.1016/j.gaitpost.2014.02.009]
8. Jacobson GP, Newman CW, Kartush JM. Handbook of balance function testing. Missouri: Mosby; 1993.
9. Karimi M, Esrafilian A. Evaluation of the stability of normal subjects and patients with Perthes and spinal cord injury disorders during short and long periods of time. Prosthetics and Orthotics International. 2013; 37(1):22-9. [DOI:10.1177/0309364612446649] [PMID] [DOI:10.1177/0309364612446649]
10. Burtner P, Woollacott M, Craft G, Roncesvalles M. The capacity to adapt to changing balance threats: A comparison of children with Cerebral Palsy and typically developing children. Developmental Neurorehabilitation. 2007; 10(3):249-60. [DOI:10.1080/17518420701303066] [PMID] [DOI:10.1080/17518420701303066]
11. Chen J, Woollacott MH. Lower extremity kinetics for balance control in children with Cerebral Palsy. Journal of Motor Behavior. 2007; 39(4):306-16. [DOI:10.3200/JMBR.39.4.306-316] [PMID] [DOI:10.3200/JMBR.39.4.306-316]
12. Liao HF, Mao PJ, Hwang AW. Test–retest reliability of balance tests in children with Cerebral Palsy. Developmental Medicine & Child Neurology. 2001; 43(3):180-6. [DOI:10.1017/S0012162201000342] [DOI:10.1017/S0012162201000342]
13. Rose J, Wolff DR, Jones VK, Bloch DA, Oehlert JW, Gamble JG. Postural balance in children with Cerebral Palsy. Developmental Medicine & Child Neurology. 2002; 44(01):58-63. [DOI:10.1111/j.1469-8749.2002.tb00260.x] [DOI:10.1111/j.1469-8749.2002.tb00260.x]
14. Ferdjallah M, Harris GF, Smith P, Wertsch JJ. Analysis of postural control synergies during quiet standing in healthy children and children with Cerebral Palsy. Clinical Biomechanics. 2002; 17(3):203-10. [DOI:10.1016/S0268-0033(01)00121-8] [DOI:10.1016/S0268-0033(01)00121-8]
15. Owings TM, Pavol MJ, Foley KT, Grabiner MD. Measures of postural stability are not predictors of recovery from large postural disturbances in healthy older adults. Journal of the American Geriatrics Society. 2000; 48(1):42-50. [DOI:10.1111/j.1532-5415.2000.tb03027.x] [PMID] [DOI:10.1111/j.1532-5415.2000.tb03027.x]
16. Karimi MT, Solomonidis S. The relationship between parameters of static and dynamic stability tests. Journal of Research in Medical Sciences. 2011; 16(4):530-5. [PMID] [PMCID] [PMID] [PMCID]
17. Bhatt T, Espy D, Yang F, Pai YC. Dynamic gait stability, clinical correlates, and prognosis of falls among community-dwelling older adults. Archives of Physical Medicine and Rehabilitation. 2011; 92(5):799-805. [DOI:10.1016/j.apmr.2010.12.032] [PMID] [DOI:10.1016/j.apmr.2010.12.032]
18. MacKinnon CD, Winter DA. Control of whole body balance in the frontal plane during human walking. Journal of Biomechanics. 1993; 26(6):633-44. [DOI:10.1016/0021-9290(93)90027-C] [DOI:10.1016/0021-9290(93)90027-C]
19. Toebes MJ, Hoozemans MJ, Furrer R, Dekker J, van Dieën JH. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait & Posture. 2012; 36(3):527-31. [DOI:10.1016/j.gaitpost.2012.05.016] [PMID] [DOI:10.1016/j.gaitpost.2012.05.016]
20. Corriveau H, Hébert R, Raı̂che M, Dubois MF, Prince F. Postural stability in the elderly: Empirical confirmation of a theoretical model. Archives of Gerontology and Geriatrics. 2004; 39(2):163-77. [DOI:10.1016/j.archger.2004.03.001] [PMID] [DOI:10.1016/j.archger.2004.03.001]
21. Rose J, Gamble JG, Burgos A, Medeiros J, Haskell WL. Energy expenditure index of walking for normal children and for children with Cerebral Palsy. Developmental Medicine & Child Neurology. 1990; 32(4):333-40. [DOI:10.1111/j.1469-8749.1990.tb16945.x] [DOI:10.1111/j.1469-8749.1990.tb16945.x]
22. Hof A, Gazendam M, Sinke W. The condition for dynamic stability. Journal of Biomechanics. 2005; 38(1):1-8. [DOI:10.1016/j.jbiomech.2004.03.025] [PMID] [DOI:10.1016/j.jbiomech.2004.03.025]
23. Massaad F, Dierick F, Van Den Hecke A, Detrembleur C. Influence of gait pattern on the body's centre of mass displacement in children with Cerebral Palsy. Developmental Medicine & Child Neurology. 2004; 46(10):674-80. [DOI:10.1017/S0012162204001136] [DOI:10.1017/S0012162204001136]
24. Massaad F, Van Den Hecke A, Renders A, Detrembleur C. Influence of equinus treatments on the vertical displacement of the body's centre of mass in children with Cerebral Palsy. Developmental Medicine & Child Neurology. 2006; 48(10):813-8. [DOI:10.1017/S0012162206001757] [DOI:10.1017/S0012162206001757]
25. Dezman ZD, Carollo JJ. Center of mass kinematics during gait initiation in children with Cerebral Palsy. Gait & Posture. 2006; 24(2):S276-S8. [DOI:10.1016/j.gaitpost.2006.11.189] [DOI:10.1016/j.gaitpost.2006.11.189]
26. Van Den Hecke A, Detrembleur C. Development of displacement of centre of mass during independent walking in children. Developmental Medicine & Child Neurology. 2004; 46(8):533-9. [PMID] [PMID]
27. Beltran EJ, Dingwell JB, Wilken JM. Margins of stability in young adults with traumatic transtibial amputation walking in destabilizing environments. Journal of Biomechanics. 2014; 47(5):1138-43. [DOI:10.1016/j.jbiomech.2013.12.011] [PMID] [PMCID] [DOI:10.1016/j.jbiomech.2013.12.011]
28. Dingwell J, Cusumano J, Sternad D, Cavanagh P. Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. Journal of Biomechanics. 2000; 33(10):1269-77. [DOI:10.1016/S0021-9290(00)00092-0] [DOI:10.1016/S0021-9290(00)00092-0]
29. Buzzi UH, Ulrich BD. Dynamic stability of gait cycles as a function of speed and system constraints. Motor Control. 2004; 8(3):241-54. [DOI:10.1123/mcj.8.3.241] [DOI:10.1123/mcj.8.3.241]
30. Bennett BC, Abel MF, Wolovick A, Franklin T, Allaire PE, Kerrigan DC. Center of mass movement and energy transfer during walking in children with Cerebral Palsy. Archives of Physical Medicine and Rehabilitation. 2005; 86(11):2189-94. [DOI:10.1016/j.apmr.2005.05.012] [PMID] [DOI:10.1016/j.apmr.2005.05.012]
31. Kerrigan DC, Della Croce U, Marciello M, Riley PO. A refined view of the determinants of gait: Significance of heel rise. Archives of Physical Medicine and Rehabilitation. 2000; 81(8):1077-80. [DOI:10.1053/apmr.2000.6306] [PMID] [DOI:10.1053/apmr.2000.6306]
32. Russell S, Bennett B, Kerrigan D, Abel M. Determinants of gait as applied to children with Cerebral Palsy. Gait & Posture. 2007; 26(2):295-300. [DOI:10.1016/j.gaitpost.2006.09.079] [PMID] [PMCID] [DOI:10.1016/j.gaitpost.2006.09.079]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Physical Treatments - Specific Physical Therapy Journal

Designed & Developed by: Yektaweb