Volume 8, Issue 1 (Spring 2018)                   PTJ 2018, 8(1): 1-8 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Norouzi E, Vaezmousavi M. The Differences in Sensorimotor Rhythm Power During Performing In-Phase and Anti-Phase Patterns in Bimanual Coordination. PTJ 2018; 8 (1) :1-8
URL: http://ptj.uswr.ac.ir/article-1-343-en.html
1- Department of Motor Behavior and Sport Management, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
2- Department of Physical Education, Faculty of Social and Cultural Sciences, Imam Hossein University, Tehran, Iran.
Abstract:   (4529 Views)
Purpose: The sensorimotor cortex oscillations (frequency ranging between 12 and 15 Hz), commonly known as Sensorimotor Rhythm (SMR) has previously displayed a promising link between the performance of the visuomotor related to skill execution and part of psychology that is adaptive (e.g. the process linked attention which is automatic). This study examined the extent of SMR power in the execution of both in- and anti-phase patterns in bimanual coordination tasks at different speeds. 
Methods: The present study used a quasi-experimental method. Study participants (n=40, aged: 19-24 years) were selected using convenience sampling method. Study participants were subjected to the 2 bimanual movements with the wrists speed levels ranging from slow to fast; while taking simultaneous records of the EEG. The neurofeedback consisted of SMR frequency of 12-15 Hz at C3 and C4. Data analysis consisted of descriptive statistics and 2-way repeated measures Analysis of Variance (ANOVA) using SPSS. Examination of post-hoc results of importance was conducted using Bonferroni correction paired comparisons. P=0.05 was set as the significance level. 
Results: The results suggested that SMR power was higher in anti-phase compared to the in-phase model. In addition, the manipulation of bimanual speed affected the SMR power by increasing it in the anti-phase when the speed increased. However, the SMR power did not raise when the in-phase pattern was conducted. 
Conclusion: Further attention is needed in the anti-phase model as it requires greater SMR power wave. Moreover, with increasing speed, the amount of SMR power can perform a better bimanual linear task.
Full-Text [PDF 645 kb]   (1819 Downloads) |   |   Full-Text (HTML)  (1908 Views)  
Type of Study: Research | Subject: General
Received: 2018/04/5 | Accepted: 2018/11/11 | Published: 2019/02/19

References
1. Gallicchio G, Cooke A, Ring C. Lower left temporal-frontal connectivity characterizes expert and accurate performance: High-alpha T7-Fz connectivity as a marker of conscious processing during movement. Sport, Exercise, and Performance Psychology. 2016; 5(1):14-31. [DOI:10.1037/spy0000055] [DOI:10.1037/spy0000055]
2. Hatfield BD, Landers DM, Ray WJ. Cognitive processes during self-paced motor performance: An electroencephalographic profile of skilled marksmen. Journal of Sport Psychology. 1984; 6(1):42-59. [DOI:10.1123/jsp.6.1.42] [DOI:10.1123/jsp.6.1.42]
3. Ishii R, Shinosaki K, Ukai S, Inouye T, Ishihara T, Yoshimine T, et al. Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport. 1999; 10(4):675-9. [DOI:10.1097/00001756-199903170-00003] [PMID] [DOI:10.1097/00001756-199903170-00003]
4. Cheng MY, Hung CL, Huang CJ, Chang YK, Lo LC, Shen C, et al. Expert-novice differences in SMR activity during dart throwing. Biological Psychology. 2015; 110(2):212-8. [DOI:10.1016/j.biopsycho.2015.08.003] [PMID] [DOI:10.1016/j.biopsycho.2015.08.003]
5. Vernon D, Egner T, Cooper N, Compton T, Neilands C, Sheri A, et al. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology. 2003; 47(1):75-85. [DOI:10.1016/S0167-8760(02)00091-0] [DOI:10.1016/S0167-8760(02)00091-0]
6. Gruzelier J, Egner T, Vernon D. Validating the efficacy of neurofeedback for optimising performance. Progress in Brain Research. 2006; 159:421-31. [DOI:10.1016/S0079-6123(06)59027-2] [DOI:10.1016/S0079-6123(06)59027-2]
7. Gruzelier JH. EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Reviews. 2014; 44(2):124-41. [DOI:10.1016/j.neubiorev.2013.09.015] [PMID] [DOI:10.1016/j.neubiorev.2013.09.015]
8. Chuang LY, Huang CJ, Hung TM. The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. International Journal of Psychophysiology. 2013; 90(3):321-8. [DOI:10.1016/j.ijpsycho.2013.10.002] [PMID] [DOI:10.1016/j.ijpsycho.2013.10.002]
9. Hosseini F, Norouzi E. Effect of neurofeedback training on self-talk and performance in elite and non-elite volleyball players. Medicina Dello Sport. 2017; 70(3):344-53. [DOI: 10.23736/S0025-7826.16.03011-8]
10. Wilson VE, Peper E, Moss D. "The mind room" in Italian soccer training: The use of biofeedback and neurofeedback for optimum performance. Biofeedback. 2006; 34(3):79-81.
11. Doppelmayr M, Weber E. Effects of SMR and theta/beta neurofeedback on reaction times, spatial abilities, and creativity. Journal of Neurotherapy. 2011; 15(2):115-29. [DOI:10.1080/10874208.2011.570689] [DOI:10.1080/10874208.2011.570689]
12. Kelso JA. Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1984; 246(6):R1000-4. [DOI:10.1152/ajpregu.1984.246.6.R1000] [PMID] [DOI:10.1152/ajpregu.1984.246.6.R1000]
13. Lee TD, Swinnen SP, Verschueren S. Relative phase alterations during bimanual skill acquisition. Journal of Motor Behavior. 1995; 27(3):263-74. [DOI:10.1080/00222895.1995.9941716] [PMID] [DOI:10.1080/00222895.1995.9941716]
14. Swinnen SP, Jardin K, Meulenbroek R, Dounskaia N, Hofkens-Van Den Brandt M. Egocentric and allocentric constraints in the expression of patterns of interlimb coordination. Journal of Cognitive Neuroscience. 1997; 9(3):348-77. [DOI:10.1162/jocn.1997.9.3.348] [PMID] [DOI:10.1162/jocn.1997.9.3.348]
15. Temprado JJ, Chardenon A, Laurent M. Interplay of biomechanical and neuromuscular constraints on pattern stability and attentional demands in a bimanual coordination task in human subjects. Neuroscience Letters. 2001; 303(2):127-31. [DOI:10.1016/S0304-3940(01)01650-0] [DOI:10.1016/S0304-3940(01)01650-0]
16. Swinnen SP. Intermanual coordination: from behavioural principles to neural-network interactions. Nature Reviews. Neuroscience. 2002; 3(5):348-59. [DOI:10.1038/nrn807] [PMID] [DOI:10.1038/nrn807]
17. Norouzi E, Farsi A, Vaezmousavi M. Effects of proprioceptive and visual disturbance on inphase and anti-phase hand performance. Physical Treatments-Specific Physical Therapy Journal. 2015; 5(1):41-8.
18. Salter JE, Wishart LR, Lee TD, Simon D. Perceptual and motor contributions to bimanual coordination. Neuroscience Letters. 2004; 363(2):102-7. [DOI:10.1016/j.neulet.2004.03.071] [PMID] [DOI:10.1016/j.neulet.2004.03.071]
19. Baldissera F, Cavallari P, Marini G, Tassone G. Differential control of in-phase and anti-phase coupling of rhythmic movements of ipsilateral hand and foot. Experimental Brain Research. 1991; 83(2):375-80. [DOI:10.1007/BF00231161] [PMID] [DOI:10.1007/BF00231161]
20. Swinnen SP, Dounskaia N, Verschueren S, Serrien DJ, Daelman A. Relative phase destabilization during interlimb coordination: The disruptive role of kinesthetic afferences induced by passive movement. Experimental Brain Research. 1990; 105(3):439-54. [DOI:10.1007/BF00233044] [DOI:10.1007/BF00233044]
21. Kelso JA, Jeka JJ. Symmetry breaking dynamics of human multilimb coordination. Journal of Experimental Psychology: Human Perception and Performance. 1992; 18(3):645-68. [DOI:10.1037/0096-1523.18.3.645] [PMID] [DOI:10.1037/0096-1523.18.3.645]
22. Li Y, Levin O, Carson RG, Swinnen SP. Bimanual coordination: Constraints imposed by the relative timing of homologous muscle activation. Experimental Brain Research. 2004; 156(1):27-38. [DOI:10.1007/s00221-003-1762-4] [PMID] [DOI:10.1007/s00221-003-1762-4]
23. Li Y, Levin O, Forner-Cordero A, Ronsse R, Swinnen SP. Coordination of complex bimanual multijoint movements under increasing cycling frequencies: The prevalence of mirror-image and translational symmetry. Acta Psychologica. 2009; 130(3):183-95. [DOI:10.1016/j.actpsy.2008.12.003] [PMID] [DOI:10.1016/j.actpsy.2008.12.003]
24. Scholz JP, Kelso JA. Intentional switching between patterns of bimanual coordination depends on the intrinsic dynamics of the patterns. Journal of Motor Behavior. 1990; 22(1):98-124. [DOI:10.1080/00222895.1990.10735504] [DOI:10.1080/00222895.1990.10735504]
25. Doppelmayr M, Klimesch W, Pachinger T, Ripper B. Individual differences in brain dynamics: Important implications for the calculation of event-related band power. Biological Cybernetics. 1998; 79(1):49-57. [DOI:10.1007/s004220050457] [PMID] [DOI:10.1007/s004220050457]
26. Zaidel E, Barnea A. Symposium IV: Quantitative EEG and neurofeedback. Brain and Cognition. 2006; 60(3):329-30. [DOI:10.1016/j.bandc.2005.09.004] [DOI:10.1016/j.bandc.2005.09.004]
27. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971; 9(1):97-113. [DOI:10.1016/0028-3932(71)90067-4] [DOI:10.1016/0028-3932(71)90067-4]
28. Grillo EU, Almeida Q, Lee TD, Abbott KV. Do vision and audition influence bimanual timing coordination for in-phase and anti-phase patterns in a linear slide task. The Open Sports Sciences Journal. 2010; 3:105-10. [DOI:10.2174/1875399X010030100105] [DOI:10.2174/1875399X010030100105]
29. Chatrian GE, Lettich E, Nelson PL. Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. American Journal of EEG technology. 1985; 25(2):83-92. [DOI:10.1080/00029238.1985.11080163] [DOI:10.1080/00029238.1985.11080163]
30. Strack B, Linden M, Wilson VS. Biofeedback & neurofeedback applications in sport psychology. Wheat Ridge, Colorado: Association for Applied Psychophysiology and Biofeedback; 2011.
31. Rostami R, Sadeghi H, Karami KA, Abadi MN, Salamati P. The effects of neurofeedback on the improvement of rifle shooters' performance. Journal of Neurotherapy. 2012; 16(4):264-9. [DOI:10.1080/10874208.2012.730388] [DOI:10.1080/10874208.2012.730388]
32. Sherlin LH, Larson NC, Sherlin RM. Developing a Performance Brain Training™ Approach for Baseball: A Process Analysis with Descriptive Data. Applied Psychophysiology and Biofeedback. 2013; 38(1):29-44. [DOI:10.1007/s10484-012-9205-2] [PMID] [DOI:10.1007/s10484-012-9205-2]
33. Casey M, Yau A, Barfoot K, Callaway A. Data mining of portable EEG brain wave signals for sports performance analysis: An archery case study. Paper presented at: The International Conference on Science, Education and Medicine in Sport. 19-24 July 2012; Glasgow, Scotland.
34. Ring C, Cooke A, Kavussanu M, McIntyre D, Masters R. Investigating the efficacy of neurofeedback training for expediting expertise and excellence in sport. Psychology of Sport and Exercise. 2015; 16:118-27. [DOI:10.1016/j.psychsport.2014.08.005] [DOI:10.1016/j.psychsport.2014.08.005]
35. Mann CA, Sterman MB, Kaiser DA. Suppression of EEG rhythmic frequencies during somato-motor and visuo-motor behavior. International Journal of Psychophysiology. 1996; 23(1):1-7. [DOI:10.1016/0167-8760(96)00036-0] [DOI:10.1016/0167-8760(96)00036-0]
36. Egner T, Zech TF, Gruzelier JH. The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology. 2004; 115(11):2452-60. [DOI:10.1016/j.clinph.2004.05.033] [PMID] [DOI:10.1016/j.clinph.2004.05.033]
37. Fitts PM, Posner MI. Human performance. Washington: American Psychological Association; 1967. [PMCID]
38. Sherwood MS, Diller EE, Ey E, Ganapathy S, Nelson JT, Parker JG. A protocol for the Administration of Real-Time fMRI Neurofeedback Training. Journal of Visualized Experiments. 2017; (126):55543. [DOI:10.3791/55543] [PMID] [PMCID] [DOI:10.3791/55543]
39. Blumenstein B, Bar-Eli M, Tenenbaum G. Brain and body in sport and exercise: Biofeedback applications in performance enhancement. Hoboken, New Jersey: John Wiley & Sons; 2002.
40. Acevedo EO, Ekkekakis P. Psychobiology of physical activity. Champaigns: Human Kinetics; 2006.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Physical Treatments - Specific Physical Therapy Journal

Designed & Developed by: Yektaweb