Volume 8, Issue 1 (Spring 2018)                   PTJ 2018, 8(1): 17-26 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nasirzade A, Mohseni Zonouzi F. Local Asymmetry and Global Symmetry During Jogging in Young Male Athletesetes. PTJ 2018; 8 (1) :17-26
URL: http://ptj.uswr.ac.ir/article-1-336-en.html
1- Department of Sports Biomechanics, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran.
2- Department of Sports Biomechanics, Faculty of Physical Education and Sports Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Abstract:   (4589 Views)
Purpose: Evaluation of joints behavioral symmetry of the lower limbs to produce a smooth, rhythmic movement is one of the topics in the field of biomechanics of running. This study investigated joints local and global symmetry while jogging in young male athletes. 
Methods: This was a quasi-experimental study. Random sampling method was used and the participants of the study included 15 healthy young male athletes (Mean±SD age=27.14±3.67 years, Mean±SD height=176.57±5.06 cm, Mean±SD weight=69.84±6.13 kg). A 6-camera motion analysis system synchronized with 2 force plate devices and a 3D Marker-set were used for data collection. Participants ran with 155 bpm step frequency controlled by a metronome. After filtering the data, kinematic and kinetic parameters were calculated using inverse dynamics method and the calculated data were normalized based on body weight and 100% running gait cycle. Paired student t-test at the significance level of 0.05 was used for determining the differences between the selected peaks of ankle, knee and hip joints moment of the dominant and Non dominant limbs. The principal component analysis technique was used on the support phase of the sagittal plane joint moment in order to compare and evaluate functional asymmetry and identify each joint (local symmetry) and lower limb actions (global symmetry). SPSS was used for statistical analysis. 
Results: Based on the findings, there were no significant differences in spatio-temporal parameters of the dominant and Non dominant limbs. Although, principal component analysis detected different functional tasks for similar joints, the same tasks were identified for the lower limbs using this method. 
Conclusion: It seems that local asymmetry and global symmetry occurs during jogging in young male athletes and central nervous system compensatory mechanisms might play an important role in this matter.
Full-Text [PDF 757 kb]   (1847 Downloads) |   |   Full-Text (HTML)  (1515 Views)  
Type of Study: Research | Subject: General
Received: 2017/10/31 | Accepted: 2018/10/13 | Published: 2019/02/19

References
1. Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: A review. Gait & Posture. 2000; 12(1):34-45. [DOI:10.1016/S0966-6362(00)00070-9] [DOI:10.1016/S0966-6362(00)00070-9]
2. Sadeghi H, Allard P, Duhaime M. Functional gait asymmetry in able-bodied subjects. Human Movement Science. 1997; 16(2-3):243-58. [DOI:10.1016/S0167-9457(96)00054-1] [DOI:10.1016/S0167-9457(96)00054-1]
3. Nasirzade A, Sadeghi H, Mokhtarinia HR, Rahimi A. Gait symmetry and its evaluation's Methods: A review. Scientific Journal of Rehabilitation Medicine. 2017; 6(2):283-97. [DOI:10.22037/jrm.2017.1100284]
4. Nasirzade A, Sadeghi H, Mokhtarinia HR, Rahimi A. A review of selected factors affecting gait symmetry. Physical Treatments-Specific Physical Therapy Journal. 2017; 7(1):3-12. [DOI:10.29252/nrip.ptj.7.1.3] [DOI:10.29252/nrip.ptj.7.1.3]
5. Carpes FP, Mota CB, Faria IE. On the bilateral asymmetry during running and cycling: A review considering leg preference. Physical Therapy in Sport. 2010; 11(4):136-42. [DOI:10.1016/j.ptsp.2010.06.005] [DOI:10.1016/j.ptsp.2010.06.005]
6. Nasirzade A, Sadeghi H, Mokhtarinia HR, Rahimi A. The influence of movement velocity on inter-lower-limbs kinematical symmetry in normal walking: Pilot study. Scientific Journal of Rehabilitation Medicine. 2017; 5(4), 159-172. [DOI:10.22037/jrm.2016.1100198]
7. Patterson KK, Nadkarni NK, Black SE, McIlroy WE. Gait symmetry and velocity differ in their relationship to age. Gait & Posture. 2012; 35(4):590-4. [DOI:10.1016/j.gaitpost.2011.11.030] [DOI:10.1016/j.gaitpost.2011.11.030]
8. Hodt-Billington C, Helbostad JL, Vervaat W, Rognsvåg T, Moe-Nilssen R. Criteria of gait asymmetry in patients with hip osteoarthritis. Physiotherapy Theory and Practice. 2012; 28(2):134-41. [DOI:10.3109/09593985.2011.574783] [DOI:10.3109/09593985.2011.574783]
9. Chavet P, Lafortune MA, Gray JR. Asymmetry of lower extremity responses to external impact loading. Human Movement Science. 1997; 16(4):391-406. [DOI:10.1016/S0167-9457(96)00046-2] [DOI:10.1016/S0167-9457(96)00046-2]
10. Zifchock RA, Davis I, Higginson J, McCaw S, Royer T. Side-to-side differences in overuse running injury susceptibility: A retrospective study. Human Movement Science. 2008; 27(6):888-902. [DOI:10.1016/j.humov.2008.03.007] [DOI:10.1016/j.humov.2008.03.007]
11. Sadeghi, H. (2003). Local or global asymmetry in gait of people without impairments. Gait and Posture, 17(3), 197-204. [DOI:10.1016/S0966-6362(02)00089-9] [DOI:10.1016/S0966-6362(02)00089-9]
12. Arampatzis A, Brüggemann GP, Metzler V. The effect of speed on leg stiffness and joint kinetics in human running. Journal of Biomechanics. 1999; 32(12):1349-53. [DOI:10.1016/S0021-9290(99)00133-5] [DOI:10.1016/S0021-9290(99)00133-5]
13. Erdfelder E, Faul F, Buchner A. GPOWER: A general power analysis program. Behaviour Research Methods, Instruments, & Computers. 1996; 28(1):1-1. [DOI:10.3758/BF03203630] [DOI:10.3758/BF03203630]
14. Perttunen JR, Anttila E, Södergård J, Merikanto J, Komi PV. Gait asymmetry in patients with limb length discrepancy. Scandinavian Journal of Medicine & Science in Sports. 2004; 14(1):49-56. [DOI:10.1111/j.1600-0838.2003.00307.x] [DOI:10.1111/j.1600-0838.2003.00307.x]
15. Winter DA. Hoboken, New Jersey: Biomechanics and motor control of human movement. Hoboken, New Jersey: John Wiley & Sons; 2009. [DOI:10.1002/9780470549148] [DOI:10.1002/9780470549148]
16. Sadeghi H, Sadeghi S, Prince F, Allard P, Labelle H, Vaughan CL. Functional roles of ankle and hip sagittal muscle moments in able-bodied gait. Clinical Biomechanics. 2001; 16(8):688-95. [DOI:10.1016/S0268-0033(01)00058-4] [DOI:10.1016/S0268-0033(01)00058-4]
17. Davis BL, Vaughan CL. Phasic behaviour of EMG signals during gait: Use of multivariate statistics. Journal of Electromyography and Kinesiology. 1993; 3(1):51-60. [DOI:10.1016/1050-6411(93)90023-P] [DOI:10.1016/1050-6411(93)90023-P]
18. Novacheck TF. The biomechanics of running. Gait and Posture. 1998; 7(1), 77-95. [DOI:10.1016/S0966-6362(97)00038-6] [DOI:10.1016/S0966-6362(97)00038-6]
19. Winter DA. Moments of force and mechanical power in jogging. Journal of Biomechanics. 1983; 16(1):91-7. [DOI:10.1016/0021-9290(83)90050-7] [DOI:10.1016/0021-9290(83)90050-7]
20. Hubli M, Dietz V. Movement disorders: Implications for the understanding of motor control. In: Gollhofer A, Taube W, Nielsen JB, editors. Routledge Handbook of Motor Control and Motor Learning. New York: Routledge; 2013. [DOI:10.4324/9780203132746.ch18] [DOI:10.4324/9780203132746.ch18]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Physical Treatments - Specific Physical Therapy Journal

Designed & Developed by: Yektaweb