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Research Paper
The Combination of Transcranial Direct Current 
Stimulation and Virtual Reality Training on Fatigue, 
Balance and Walking in Patients With Multiple 
Sclerosis

Purpose: Fatigue, imbalance, and walking disorder were commonly observed in patients with 
multiple sclerosis (MS) as debilitating symptoms. Therefore, the present study aims to examine 
the effect of transcranial direct current stimulation (tDCS) separately and in combination with 
virtual reality (VR) training on fatigue, balance, and walking (speed and stride length) in patients 
with MS.

Methods: The present clinical trial research was conducted with 30 MS patients aged 18-55 
years (including 21 women and 9 men). The random assignment of subjects was assessed into 
one of three groups, tDCS group, VR group, and combined tDCS-VR training group. In the 
tDCS group, the M1 motor cortex was stimulated by direct electrical current in five sessions, 
and VR training patients participated in the VR program for six sessions. In the combination 
intervention, participants were delivered tDCS before each VR session. Fatigue severity scale 
(FSS), Berg balance scale (BBS), and 25-foot walk test (T25-FW) were used to evaluate the 
fatigue, balance, and walking speed respectively as pre and post-tests. Statistical analysis of 
covariance (ANCOVA) was used to compare the results between the three groups.

Results: Our results showed a significant effect of tDCS, VR, and tDCS-VR on fatigue and 
a significant effect of VR and tDCS-VR on balance and walking speed in patients with MS 
(P<0.05). In comparing the different interventions performed on the effect on fatigue and balance 
and walking speed, the improvements were significant in VR and tDCS-VR groups compared 
to the tDCS group (P<0.05); however, the difference was not significant between VR and tDCS-
VR groups (P>0.05).

Conclusion: Despite the positive effect of fatigue, we found VR and tDCS-VR to be a more 
effective method for treating balance and walking of the patient. The combination effect of tDCS 
with VR therapy, should be investigated further.
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Introduction

ultiple sclerosis (MS) is a chronic and 
degenerative neurological disease, 
with myelin sheath damage in the 
central nervous system (CNS) [1]. 
Pathological features of the disease, 
such as inflammation, demyelin-

ation, and destruction of neurons differently appear [2]. 
The most common non-traumatic CNS injury in young 
adults with an average age of 20-40 years is MS [3]. The 
clinical course of the disease is heterogeneous, including 
mild neurological symptoms to progressive and debili-
tating forms [3]. Due to the demyelination, patients ex-
perience simple or multiple sensory, motor, emotional-
behavioral, and cognitive symptoms [4], depending on 
the location of the lesions [5]. Common symptoms of 
the disease include muscle weakness, spasticity, fatigue, 
sensory dysfunctions, balance problems, cognitive dis-
orders, and difficulty in walking [6] Symptoms signifi-
cantly affect a patient’s social communication, quality of 
life, job, and performance [7].

Fatigue, as one of the common and debilitating symp-
toms [8], affects about 80% of patients at different 
stages of the disease [9]. It reduces cognitive and func-
tional abilities, associated with increased need for rest 
and decreased motivation [10]. Primary and secondary 
progressive stages of the disease showed more fatigue 
symptoms compared to relapsing-remitting MS [4]. The 
pathophysiology of fatigue in MS is not known [11], 
but it occurs as a result of brain dysfunction (primary 

fatigue) or following symptoms during the disease (sec-
ondary fatigue) [12]. Primary fatigue results from the 
pathophysiological process of the disease itself, and also 
secondary fatigue is caused by the complications of the 
disease, such as endocrine disorders, infections, lack of 
vitamins, and anemia [8, 10]. People with MS can have 
limitations in daily activities due to muscle weakness, 
spasticity, and imbalance. Therefore, it has a bad effect 
on walking and increases the risk of falling. More than 
spasticity in MS people, it prevents functional activities, 
such as moving, which increases disability. Therefore, 
fatigue has a negative effective (mentally and physi-
cally) life and the ability to work in patients with MS 
by limiting daily activities and coping abilities [13, 14].

Imbalance is one of the primary symptoms of MS asso-
ciated with an increased risk of falling [15, 16]. Reduced 
functional capacity, muscle weakness, fatigue, and 
spasms, which are common symptoms in these patients, 
may lead to inappropriate balance [17, 18]. This debili-
tating symptom has been reported in 75% of patients, 
which can reduce the mobility and independence of the 
affected person and ultimately affect his/her quality of 
life [19]. Balance problems occur at the beginning of the 
disease and usually increase with the progress of the dis-
ease [20].

Walking disorder is also commonly seen in MS pa-
tients and is described as the most challenging symptom 
by 70% of patients [21, 22]. The patterns of walking 
disorders that are reflected as asymmetry and coordina-
tion dysfunction in patients reduce walking speed and 
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Highlights 

• Walking and balance in multiple sclerosis (MS) patients were improved by virtual reality (VR) training separately 
and in combination with transcranial direct current stimulation (tDCS).

• In comparing VR training and tDCS combined with VR training, our results showed no significant difference; 
however, the effect of tDCS combined with VR training should be investigated further. 

Plain Language Summary 

MS is one of the common non-traumatic brain injuries in young adults characterized by heterogeneous neurological 
symptoms, including sensory, motor, emotional-behavioral, and cognitive symptoms. Regarding insufficient and limit-
ed effects of drug therapy in MS, novel intervention methods, includin tDCS and VR should be considered. The current 
study was conducted to evaluate the effect of VR training in combination and separately with tDCS on fatigue, balance, 
and walking disorders in MS patients. Our results showed improvement in fatigue after all interventions and in balance 
and walking only after VR and tDCS-VR training. VR training separately and in combination with tDCS had a better 
effect than tDCS, but the difference was not significant between VR training and tDCS combined with VR training.

Charehjou B, et al. The Effect of tDCS Combining VR Training in MS. PTJ. 2024; 14(3):171-182.



173

 July 2024. Volume 14. Number 3

increase energy consumption [23]. Walking disorders 
appear in different ways, including decreasing the length 
of the step, reducing the speed, and increasing the width 
of the step [24]. Walking and balance problems lead to 
an increase in falling risk, activity limitation, and isola-
tion, which are worsened by the progression of the dis-
ease [25].

Pharmacological treatment controls the symptoms and 
consequences of the disease, but the results are not clini-
cally satisfactory. Alternative therapies have introduced 
to relieve existing symptoms and to prevent complica-
tions of MS [26].

Exercise training and behavioral therapy are both use-
ful for patients with mild disease symptoms [1]. In recent 
years, in addition to physical exercises, the number of 
studies on the effectiveness of other non-drug methods, 
including non-invasive brain stimulation techniques, has 
increased. One of these effective methods is transcranial 
direct current electrical stimulation (tDCS), which is 
easy to use, and is considered a cheap and non-invasive 
tool for the motor rehabilitation of patients [6, 25]. tDCS 
produces a low-amplitude direct current that can change 
cortical excitability without harmful side effects [2, 8]. 
Stimulation with anodic direct current increases the rest-
ing potential of the neuronal membrane, while with cath-
ode current resting potential [26]. 

tDCS is widely used in the rehabilitation of various 
neurological diseases, such as stroke, Parkinson’s dis-
ease, and MS [27]. Navarra-Lopez et al. in their sys-
tematic review reported that tDCS along with physical 
therapy can improve the walking parameters, static and 
dynamic balance, and lower limb function in stroke [28]. 
Another study conducted on people with Parkinson’s 
disease in 2020 showed that one session of bilateral and 
electrical stimulation of the cerebellum can significantly 
improve balance performance [29].

Among other techniques in rehabilitation, virtual real-
ity (VR), focusing on neural augmentation and motor 
learning is an effective method that can be used as an 
alternative to traditional rehabilitation in MS patients 
[1]. VR provides the user with an alternative and favor-
able simulation of activity or environment that permits 
interaction through multiple sensory systems [30]. The 
environment contains various stimulation which pro-
duces a potent signal to reorganize sensorimotor circuits 
which can affect the motor cortex during motor learning 
[31]. By the way, repeated and purposeful observation 
of activities can influence cortico-cortical interactions in 
the premotor and motor areas [32]. Therefore VR pre-

pares relevant and meaningful stimulation to individu-
al’s different brain areas, promoting motor learning and 
rehabilitation via neuroplasticity. VR not only improves 
patients’ quality of life but also has a role in the return 
of their brain health [33]. In recent years, VR technol-
ogy has increasingly become affordable, flexible, and 
portable, which enables researchers to consider its use 
in many fields, especially the medical field [34, 35]. In 
a systematic study and meta-analysis, Zhang et al. con-
firmed that VR training is effective in the motor func-
tion of the upper and lower limbs, walking, balance, and 
daily activity of stroke patients and improves variables, 
but without effect on cognition [36]. Moreover, the study 
conducted by Abou L et al showed positive effects of VR 
training that improves balance during sitting and stand-
ing and a trend of gait improvement in persons with SCI 
[37]. Another study performed by Wang et al. [38] on 
the effectiveness of VR on the balance and walking of 
people with Parkinson’s showed a significant effect on 
balance with no effect on walking [38].

The limited studies evaluated the effects of tDCS and 
VR on complications, such as fatigue, balance disorder, 
and walking in people with MS. Therefore, the present 
study was conducted to evaluate the effect of tDCS and 
VR on the mentioned symptoms of the disease. In addi-
tion, no investigation was found to study the combined 
effects of VR and tDCS on the mentioned variables. The 
synergistic effects of these two intervention methods 
can lead to greater effectiveness and shorter treatment 
time. Therefore, the secondary goal of this investigation 
was to compare the therapeutic effects of VR and tDCS 
separately and in combination on the level of fatigue, 
balance, and some walking parameters (speed & stride 
length) of people with MS.

Materials and Methods

The participants included 30 patients with MS aged 
18-55 years. Patients whose disease was confirmed by 
neurologists participated in the present study voluntarily 
and purposefully. The inclusion criteria included a pa-
tient with expanded disability status scale (EDSS) ≤6 
(EDSS is used to quantify disability and monitor its al-
terations during the time in MS) and not having any type 
of severe visual impairment, no history of concussion, 
ability to walk independently with or without an assis-
tive device and not having any attack during last month. 
By the way, the exclusion criteria included patients with 
any severe systemic disorder, such as epilepsy or psychi-
atric disease, which prevented the use of VR modality 
and electrical stimulation. Participants entered the study 
after completing the written informed consent form and 
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had the option to withdraw from the research at any time. 
The patients were brain type of MS with their routine 
MS drug therapy without participating in other rehabili-
tation interventions. Table 1 presents the demographic 
information of the subjects. 

The present study is a clinical trial study, with pre and 
post-assessment. The subjects were randomly allocated 
(by choosing a number from the box) to one of three 
groups according to the study inclusion/exclusion cri-
teria, tDCS-VR group (n=10), VR group (n=10), and 
tDCS group (n=10).

The pre-test performed before the intervention in-
cluded the fatigue severity scale (FSS), modified fatigue 
effect scale (MFIS), balance sheet scale (BBS), and 25-
foot walk test (T25-FW). Immediately after the interven-
tion, these evaluations were repeated as post-test. The in-
tervention stages are shown in Figure 1. The researcher 
administering all tests was blinded to the test condition.

tDCS

A device (ActivaDose) was used to administer tDCS 
by a trained therapist. At first, we placed the anode and 
cathode electrodes in 5×5 cm sponge pads, and the pads 
were dipped in salt solution. We placed the anode elec-
trode on the motor cortex M1 (C3) on the left side and 
the cathode on the right forehead according to the inter-
national 10-20 system [38]. Then, the stimulation proto-
col [38] consisting of electrical stimulation of the brain 
with a direct current of 2 mA, 20 minutes daily for 5 con-
secutive days was used. As a sham intervention, the cur-
rent was turned off after 60 s of the onset of stimulation.

VR

The VR protocol was implemented using the VR BOX 
headset and based on the defined protocol [17, 39] and 
Costa (2020) [40]. Patients performed the VR program 
three sessions per week for two weeks. The duration of 
each session was 20 minutes. 

We used the VR BOX headset to implement the VR 
protocol. In this way, we first put the Android phone 
inside the headset compartment and then put it on the 
patient’s face.

The combined protocol was as follows: We placed the 
anode and cathode electrodes on the M1 motor cortex 
and on the forehead, respectively. We applied direct elec-
trical stimulation of the brain for two weeks and three 
seasons every week with a current intensive of 2MA 

and 20 minutes. After fixing the electrodes in the desired 
place using a strap, we placed the VR headset on the pa-
tient’s face and applied two stimuli simultaneously. VR 
was also performed for six sessions, three times a week, 
and for 20 minutes.

The games include Slalom ski, penguin slide, and mar-
ble balance:

Slalom ski: This game requires the patient to pass be-
tween two flags placed along the track.

Penguin slide: In this game, patients must move from 
the ice platform to the fishing points outside the platform 
without falling.

Marble balance: In this game, the patient has to put 
the ball in a hole. Accordingly, he/she should shift his/
her body weight to the direction where he/she wants the 
ball to be placed. If successful, the patient is transferred 
to the next stage, which is more difficult.

It should be noted that the VR group was also consid-
ered as a sham group and thus therefore simultaneously 
received sham stimulation by electrodes located accord-
ing to the mentioned protocol.

During the combined VR+tDCS protocol, the anode 
and cathode electrodes were placed on the M1 motor 
cortex and the forehead, respectively, and at the same 
time, the VR headset was placed on a patient’s face, and 
both types of intervention were performed simultane-
ously (tDCS with intensity of 2 mA that simultaneously 
applied using VR for 20 minutes for two weeks and three 
sessions each per week).

Tools

FSS: FSS is a 9-item scale that mainly focuses on the 
physical aspect of fatigue. Each item has a 7-point Likert 
scale, ranging from 1 (completely disagree) to 7 (com-
pletely agree). Therefore, the total score can be from 9 to 
63. Having a FSS <4, 4> FSS <5, and FSS >5 is classi-
fied as mild, moderate, and severe fatigue, respectively. 
In the Iranian version of the instrument, Cronbach’s α 
coefficient and intra-class correlation coefficient (ICC) 
were reported as 0.96, and 0.93 respectively. A validity 
of 85% was shown in the researchers’ results [40]. 

MFIS: MFIS is a 21-item scale that assesses cognitive 
and psychosocial in addition to physical dimensions with 
a 5-point Likert scale, ranging from zero (never) to four 
(almost always). The range of total score is from 0 to 84. 
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A correlation of r=68%, P<0.0001 was reported between 
the two tests of fatigue intensity scale and modified fa-
tigue effect [41]. A high Cronbach’s score and ICC were 
reported in the Persian version of MFIS [41].

Berg balance scale (BBS): BBS contains 14 common 
functional activities that are performed repeatedly in a 
day in a 4-point Likert scale, ranging from 0 to 4 (0 in-
dicating the lowest level of performance and 4 indicating 
the highest level of performance). Persian version of the 
test showed very high inter-rater and test re-test reliability 
(ICC=0.93 and 0.95, respectively) in the elderly [42, 43].

T 25-F W: T 25-F W as one of the three components of 
patients with MS function evaluates walking speed. Walk-
ing speed in meters per second is obtained by dividing the 
measured distance of 25 feet by the time. The reliability 
and validity of the T25-FW is reported as 97% [44]. 

Statistical analysis

The first normality of data was checked. The depen-
dent t-test was used to compare within-group variables. 
Then analysis of covariance (ANCOVA) was employed 
to determine differences between the post-test scores of 
three groups, using baseline values as covariates while 
Turkey’s method was used as a post-test. P<0.05 was 
regarded as statistically significant. SPSS software, ver-
sion 19, was used for statistical analysis.

Results

All participants completed all stages, and also no drop 
was observed in the number of samples in the present 
study. Table 1 presents the demographic characteristics 
and disability score (Mean±SD) of the groups. Descrip-
tive finding and comparison of within-group assess-
ments were shown in Table 2. 

The one-way analysis of covariance (ANCOVA) was 
used to compare the adjusted mean of the dependent 
variables in the 2×3 design (three groups in two stages). 
A significant difference was observed between the post-
test-adjusted mean of all dependent variables (P<0.05) 
(Table 3).

According to Turkey’s post hoc test results of the mean 
intensity of fatigue, both the VR and the tDCS-VR group 
significantly had lower scores than the tDCS group 
(P<0.001); however, the mean fatigue intensity between 
the VR and the tDCS-VR group was not significant 
(P=0.990) (Table 4).

Regarding the post hoc results of the balance test, the 
VR and tDCS-VR groups were significantly better than 
the tDCS group (P<0.001). No significant difference was 
observed between the mean balance of the VR group and 
the tDCS-VR group (P=0.995) (Table 4).

According to the mean walking speed, the VR and the 
tDCS-VR groups were significantly better than the tDCS 
group (P<0.001). While the difference between the mean 
walking speed of the VR and the tDCS-VR groups was 
not significant (P=1.000).

Moreover, in the mean modified fatigue, the VR group 
significantly showed lower scores than the tDCS and 
tDCS-VR groups (P=0.037), therefore it can be said that 
the VR intervention significantly reduced the modified 
fatigue compared to the other two interventions.

Discussion

The present study was conducted to investigate the 
effects of VR and tDCS separately and in combination 
on fatigue; balance and walking speed of MS patients. 
The results showed a significant effect of tDCS, VR, 
and tDCS-VR on fatigue and a significant effect of VR 
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Groups VR (n = 10) tDCS (n = 10) VR and tDCS (n = 10) 

Sex (m/f) 3/7 3/7 3/7 

Age (y) 40.0 ± 10.57 36.7 ± 8.40 39.9 ± 12.38 

Weight (kg) 75.2 ± 5.63 74.2 ± 2.04 72 ± 3.23 

EDSS 6.2 ± 0.26 6.05 ± 0.24 6.3 ± 0.025 

Abbreviations: EDSS, expanded disability status scale; VR, virtual reality; tDCS, transcranial 
direct current stimulation. 
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Figure 1. Intervention stages
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Table 1. Demographic characteristic and disability score of groups

Variables
Mean±SD/ No.

VR (n=10) tDCS (n=10) VR and tDCS (n=10)

Sex (male/female) 3/7 3/7 3/7

Age (y) 40.0±10.57 36.7±8.40 39.9±12.38

Weight (kg) 75.2±5.63 74.2±2.04 72±3.23

EDSS 6.2±0.26 6.05±0.24 6.3±0.025

Abbreviations: EDSS: Expanded disability status scale; VR: Virtual reality; tDCS: Transcranial direct current stimulation.

Table 2. Descriptive finding and comparison of within-group assessments in three groups 

Variables Groups Pre-test Post-test t P

FSS

VR 47.1±4.81 28.9±4.06 8.38 0.0001

tDCS 47.11±3.47 45.1±2.92 2.73 0.02

tDCS-VR 48.8±4.73 29.9±2.46 10.04 0.0001

MFIS

VR 59.5±7.16 50.8±7.68 2.46 0.03

tDCS 61.3±5.43 59.2±5.41 2.16 0.06

tDCS-VR 61.2±7.91 51.7±7.3 2.36 0.04

Balance (BBS)

VR 41.3±2.58 45.5±2.32 -3.64 0.005

tDCS 41.5±2.36 39.5±2.77 1.79 0.1

tDCS-VR 42.7±1.56 45.9±2.76 -2.58 0.02

Walking (T 25-F W)

VR 4.82±0.5 3.76±0.23 8.95 0.0001

tDCS 4.89±0.46 4.77±0.33 0.88 0.39

tDCS-VR 4.83±0.46 3.58±0.35 6.48 0.0001

Abbreviations: VR: Virtual reality; tDCS: Transcranial direct current stimulation; FSS: Fatigue severity scale; MFIS: Modified 
fatigue impact scale; BBS: Berg balance scale.

Table 3. Covariance statistics for comparison of three groups

Variables Sum of Squares df F Sig. Effect Size

FFS
Base line 0.44 1 0.004 0.949 0.00

Intervention 163.68 2 75.85 0.000 0.854

MFIS
Base line 2.01 1 0.041 0.841 0.002

Intervention 427.37 2 4.370 0.023 0.252

Balance
Base line 15.46 1 3.082 0.091 0.106

Intervention 269.22 2 26.832 0.001 0.674

Walking
Base line 0.208 1 2.245 0.146 0.079

Intervention 8.56 2 46.186 0.001 0.780

FSS: Fatigue severity scale; MFIS: Modified fatigue impact scale.
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and tDCS-VR on balance and walking speed in patients 
with MS. In comparing the effect of different interven-
tions on fatigue, balance, and walking speed, the VR and 
tDCS-VR groups significantly showed better results, but 
no significant difference was observed between VR and 
tDCS-VR groups. A significant difference of the modi-
fied fatigue was observed between the VR with the other 
groups.

Fatigue: Our study showed that all three groups (in-
cluding AtDCS, VR, and tDCS-VR) had a significant 
decrease in the intensity of fatigue in the post-test com-
pared to the pre-test. The participants in the tDCS group 
improved severe fatigue symptoms and 8 of them im-
proved the modified fatigue. In the present study, anodic 
stimulation was used by placing the stimulating electrode 
on the left M1 region and the cathode on the right fron-
tal region. In previous studies, different areas have been 
used to reduce fatigue, such as [45] dorsolateral prefron-
tal cortex (DLPFC), parietal P4 [46] and S1 [47] and M1 
[48]. Anodic stimulation can improve fatigue caused by 
MS by several mechanisms, including the antidepressant 
effects of AtDCS [49], and the neurochemical effects of 
anodic stimulation leading to facilitating the entry and 
exit of the motor system. These effects occur by increas-
ing substances, such as myoinositol following tDCS and 

rTMS stimulation [50] inside the brain, which increases 
force production and its stability, or by decreasing media-
tors, such as gamma-aminobutyric acid (GABA), which 
compensates for impaired brain function [51]. Another 
mechanism for reducing fatigue during anodic stimula-
tion is an increase in neuronal and axonal excitability in 
the cortex [52] which according to the pathophysiology 
of MS disease can be effective in axonal transmission. It 
can also be effective in facilitating thalamocortical affer-
ents [53]. Resting-state MRI analysis showed that anodic 
stimulation strengthens neuronal connections, leading to 
recovery from fatigue [54, 55]. M1 stimulation increases 
cortical excitability and recruitment of more motor units 
and reduces supra-spinal fatigue [56]. In a review per-
formed [57], the effectiveness of VR on functional mo-
bility, balance, fatigue and quality of life in people with 
MS has been observed compared to regular exercises 
[58], which is consistent with our study. Previous studies 
have shown that the use of VR without accompanying 
physical exercises can be effective in improving the de-
bilitating effects of MS disease [59]. Compared to physi-
cal exercises improving muscle resistance, heart rate and 
respiratory frequency plays a crucial role in the treat-
ment of fatigue; VR is more adaptable to the patient’s 
conditions. The possibility of performing at home and 
high attractiveness in patients create more motivation.

Table 4. Tukey’s post hoc test results to compare the research groups in the post-test stages

Group I Group J Difference of Means (I-J) Meaningful

FS
S

tDCS-VR
VR 1 0.76

tDCS -15.20 0.0001*

VR tDCS -16.20 0.0001*

M
FI

S tDCS-VR
VR 0.90 0.95

tDCS -7.5 0.05*

VR tDCS -8.40 0.02*

BB
S

tDCS-VR
VR 0.40 0.92

tDCS 6.40 0.0001*

VR tDCS 6.00 0.0001*

W
al

ki
ng

 (T
 2

5-
F 

W
)

tDCS-VR
VR -0.09 0.79

tDCS -1.19 0.0001*

VR tDCS -1.10 0.0001*

Abbreviations: VR: Virtual reality; tDCS: Transcranial direct current stimulation; FSS: Fatigue severity scale; MFIS: Modified 
fatigue impact scale; BBS: Berg balance scale. 
*Significant at P≤0.05.
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On the other hand, the results of our study showed that 
in the post-test, the VR + tDCS group and the VR group 
had less fatigue than the tDCS group. Similarly, no im-
provement in fatigue symptoms was reported in active 
tDCS compared to sham+video game effect in a case 
report of MS patients.

The results showed that the VR+tDCS group as well 
as the VR group had better balance and showed a sig-
nificant reduction in walking time from pre-test to post-
test; while the tDCS groups did not show any significant 
change. Also, no significant difference was observed be-
tween the two VR+tDCS group and the VR group. The 
effectiveness of VR in the balance and gait of patients 
with MS compared to conventional mediated treatments 
has been proven due to their cost-effectiveness and at-
tractiveness during review studies and meta-analysis 
[19, 60]. 

VR can provide a multiple sensory environment to the 
MS patient, which can cause neuroplasticity in the mo-
tor sensory cortex, and may be effective in the patient’s 
motor rehabilitation [61]. A similar effect of VR training 
and tDCS in promoting neuroplasticity of the cortex in 
neurologic patients has been shown by functional mag-
netic resonance imaging (fMRI) [62, 63].

Since several exergames, such as Xbox Kinect or 
Nintendo Wii sports games require fast hand-eye, and 
foot-eye coordination, VR training can improve cogni-
tive-motor skills, including hand-eye coordination, and 
eye-foot coordination, and increase manual dexterity 
and the ability to perform movements like walking.

Therefore, we tried to use games in the present study 
in which coordination can play a significant role in 
playing them. For example, in the game of boxing, two-
handed and hand-eye coordination, soccer game, eye-
foot coordination, tennis game, eye-hand coordination, 
golf game, two-handed coordination, American football 
game, hand-eye coordination, and in skiing game, eye-
foot coordination, eye-hand coordination, and bimanual 
coordination are essential.

To the best of our knowledge, except for a case study 
[39], this is the first randomized controlled study to apply 
a combined tDCS-VR method to MS patients. Although 
the facilitating effect of brain stimulation on the effec-
tiveness of VR therapy has been reported in some previ-
ous studies [64, 65], we did not find a significant differ-
ence between the two groups of VR + tDCS combination 
with VR+sham, indicating that tDCS did not enhance 
the positive effect of VR on balance and walking speed. 

Consistent with our study, in some studies, the addition 
of tDCS did not strengthen the effect of VR [66]. The 
lack of difference between VR+ sham and VR+ anodal 
tDCS in the investigation conducted by Monte-Silva et 
al on stroke patients was explained by the ceiling effect 
[67]. The other reason may be that our tDCS protocol 
did not completely target the cortex area involved in bal-
ance and walking. Future studies are needed to evaluate 
the combined effect of placing anodal electrodes in other 
areas like Cz to stimulate the bilateral motor cortex.

Conclusion

Our results showed that VR separately and in combi-
nation with tDCS can improve fatigue, and balance and 
walking speed in patients with MS. However, we found 
more excessive effect in tDCS combined with VR thera-
py. Our results indicate that the effect of tDCS with VR 
therapy should be investigated further. 

Considering that VR exercises and tDCS are a new 
training method of interventions for treating movement 
problems. And by creating an attractive and fresh envi-
ronment, in addition to being a training environment, it 
makes people with MS cheerful and play a challenging 
environment by using games. It is suggested that accord-
ing to the positive effects of VR and tDCS on significant 
or positive improvement in various parameters of this 
study, continuous use in the exercises of people with MS 
is suggested.

Also, due to the ease of using these exercises and the 
ability to do them at home and in rehabilitation centers, 
it is recommended to use these exercises at home and in 
rehabilitation centers.

It is recommended that evaluations be conducted for 
more accurate tests and instruments. For example, 
checking balance with Biodex and walking with quinoa, 
like examining plasticity by imaging the brain.

Considering that people with MS were used in this 
study, if possible, it should be tested for other people 
who have movement problems.

In this research, due to the limitations of the subject 
and the researcher, limited variables were measured. It 
is recommended to examine other movement variables 
related to MS, such as coordination and reaction time.
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