Volume 7, Issue 2 (Summer 2017 2017)                   PTJ 2017, 7(2): 103-112 | Back to browse issues page

XML Persian Abstract Print


1- Department of Sports Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran.
2- Department of Sports Biomechanics, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran.
3- Department of Sports Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran.
Abstract:   (305 Views)
Purpose: Predicting body Center of Mass (COM) acceleration is carried out with more accuracy based on the acceleration of three joints of lower limb compared to only accounting joints of hip and ankle. Given that trunk movement during quite standing is noticeable, calculating trunk acceleration in model might increase prediction accuracy of COM acceleration. Moreover, in previous research studies, dominant and nondominant limb was neglected as influencing variables in prediction accuracy. Therefore, this study aimed to investigate the accuracy of predicting COM acceleration based on the accelerations of lower limb joints and trunk, with emphasis on weight distribution on legs.
Methods: The relevant kinematic data were collected using motion analysis systems. In this regard, visual 3D software was used to create a 14-segment model for each subject and estimate the positions of body COM. A force plate was used to assess the body weight distribution between legs. Calculation of the summation of joints angular accelerations was done using algebraic addition of time series data.
Results: Prediction of COM acceleration, based on the individual acceleration of lower limb joints and trunk, revealed that just acceleration of hip joint in both dominant and nondominant lower limbs was an appropriate variable for predicting COM acceleration (R2adj =0.40). However, during prediction based on the summation of trunk and joints accelerations, its accuracy showed a significant increase (R2adj=0.90).
Conclusion: The summation of angular accelerations of trunk and lower limb joints is the most accurate predictor of COM acceleration during quiet standing balance control. Simultaneous changes of lower limb joints and trunk accelerations control COM acceleration.
Full-Text [PDF 829 kb]   (108 Downloads) |   |   Full-Text (HTML)  (8 Views)  
Type of Study: Research | Subject: General
Received: 2016/12/1 | Accepted: 2016/12/29 | Published: 2017/07/1

References
1. Peterka RJ. Sensorimotor Integration in Human Postural Control. Journal of Neurophysiology. 2002; 88(3):1097–118. doi: 10.1152/jn.2002.88.3.1097 [DOI:10.1152/jn.2002.88.3.1097]
2. Massion J. Movement, posture and equilibrium: Interaction and coordination. Progress in Neurobiology. 1992; 38(1):35–56. doi: 10.1016/0301-0082(92)90034-c [DOI:10.1016/0301-0082(92)90034-C]
3. Hasan SS, Robin DW, Shiavi RG. Drugs and postural sway: quantifying balance as a tool to measure drug effects. IEEE Engineering in Medicine and Biology Magazine. 1992 Dec;11(4):35–41. doi: 10.1109/51.256956 [DOI:10.1109/51.256956]
4. Ji Z, Findley T, Chaudhry H, Bukiet B. Computational method to evaluate ankle postural stiffness with ground reaction forces. The Journal of Rehabilitation Research and Development. Journal of Rehabilitation Research & Development; 2004; 41(2):207. doi: 10.1682/jrrd.2004.02.0207 [DOI:10.1682/JRRD.2004.02.0207]
5. Barbier F, Allard P, Guelton K, Colobert B, Godillon-Maquinghen AP. Estimation of the 3-d center of mass excursion from force-plate data during standing. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2003; 11(1):31–7. doi: 10.1109/tnsre.2003.810433 [DOI:10.1109/TNSRE.2003.810433]
6. Chaudhry H, Bukiet B, Ji Z, Findley T. Measurement of balance in computer posturography: Comparison of methods—A brief review. Journal of Bodywork and Movement Therapies. 2011; 15(1):82–91. doi: 10.1016/j.jbmt.2008.03.003 [DOI:10.1016/j.jbmt.2008.03.003]
7. Ruhe A, Fejer R, Walker B. The test–retest reliability of centre of pressure measures in bipedal static task conditions – A systematic review of the literature. Gait & Posture. 2010; 32(4):436–45. doi: 10.1016/j.gaitpost.2010.09.012 [DOI:10.1016/j.gaitpost.2010.09.012]
8. Morasso PG, Spada G, Capra R. Computing the COM from the COP in postural sway movements. Human Movement Science. 1999; 18(6):759–67. doi: 10.1016/s0167-9457(99)00039-1 [DOI:10.1016/S0167-9457(99)00039-1]
9. Winter D. Human balance and posture control during standing and walking. Gait & Posture. 1995; 3(4):193–214. doi: 10.1016/0966-6362(96)82849-9 [DOI:10.1016/0966-6362(96)82849-9]
10. Kobravi H-R, Erfanian A. A decentralized adaptive fuzzy robust strategy for control of upright standing posture in paraplegia using functional electrical stimulation. Medical Engineering & Physics. 2012; 34(1):28–37. doi: 10.1016/j.medengphy.2011.06.013 [DOI:10.1016/j.medengphy.2011.06.013]
11. Günther M, Grimmer S, Siebert T, Blickhan R. All leg joints contribute to quiet human stance: A mechanical analysis. Journal of Biomechanics. 2009; 42(16):2739–46. doi: 10.1016/j.jbiomech.2009.08.014 [DOI:10.1016/j.jbiomech.2009.08.014]
12. Hsu W-L, Scholz JP, Schöner G, Jeka JJ, Kiemel T. Control and Estimation of Posture During Quiet Stance Depends on Multijoint Coordination. Journal of Neurophysiology. 2007; 97(4):3024–35. doi: 10.1152/jn.01142.2006 [DOI:10.1152/jn.01142.2006]
13. Yamamoto A, Sasagawa S, Oba N, Nakazawa K. Behavioral effect of knee joint motion on body's center of mass during human quiet standing. Gait & Posture. 2015; 41(1):291–294. doi: 10.1016/j.gaitpost.2014.08.016 [DOI:10.1016/j.gaitpost.2014.08.016]
14. Zhang H, Nussbaum MA, Agnew MJ. Development of a sliding mode control model for quiet upright stance. Medical Engineering & Physics. 2016; 38(2):204–8. doi: 10.1016/j.medengphy.2015.11.019 [DOI:10.1016/j.medengphy.2015.11.019]
15. Aramaki Y, Nozaki D, Masani K, Sato T, Nakazawa K, Yano H. Reciprocal angular acceleration of the ankle and hip joints during quiet standing in humans. Experimental Brain Research. 2001; 136(4):463–73. doi: 10.1007/s002210000603 [DOI:10.1007/s002210000603]
16. Sasagawa S, Ushiyama J, Kouzaki M, Kanehisa H. Effect of the hip motion on the body kinematics in the sagittal plane during human quiet standing. Neuroscience Letters. 2009; 450(1):27–31. doi: 10.1016/j.neulet.2008.11.027 [DOI:10.1016/j.neulet.2008.11.027]
17. Scholz JP, Schöner G, Hsu WL, Jeka JJ, Horak F, Martin V. Motor equivalent control of the center of mass in response to support surface perturbations. Experimental Brain Research. 2007; 180(1):163–79. doi: 10.1007/s00221-006-0848-1 [DOI:10.1007/s00221-006-0848-1]
18. Taheri AR, Karimi MT. Evaluation of the gait performance of above-knee amputees while walking with 3R20 and 3R15 knee joints. Journal of Research in Medical Sciences. 2012; 17(3):258-63. PMCID: PMC3527044 [PMID] [PMCID]
19. Dempster WT. Space requirements of the seated operator (technical report). New York: Wright-Patterson Air Force Base Ohio. 1995.
20. Hoffman M, Schrader J, Applegate T, Koceja D. Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. Journal of Athletic Training. 1998; 33(4):319-322. PMCID: PMC1320581 [PMID] [PMCID]
21. Velatto J, Weyer J, Ramirez A, Winstead J, Bahamonde R. Relationship between leg dominance tests and type of task. Journal of Sports Sciences. 2011; 11(2):1035-1038.
22. Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: a review. Gait & Posture. 2000; 12(1):34–45. doi: 10.1016/s0966-6362(00)00070-9 [DOI:10.1016/S0966-6362(00)00070-9]
23. Winter D. Biomechanics and motor control of human movement. 3rd edition. New York: Wiley; 2004.
24. Rougier PR. Relative contribution of the pressure variations under the feet and body weight distribution over both legs in the control of upright stance. Journal of Biomechanics. 2007; 40(11):2477–82. doi: 10.1016/j.jbiomech.2006.11.003 [DOI:10.1016/j.jbiomech.2006.11.003]
25. Genthon N, Rougier P. Influence of an asymmetrical body weight distribution on the control of undisturbed upright stance. Journal of Biomechanics. 2005; 38(10):2037–49. doi: 10.1016/j.jbiomech.2004.09.024 [DOI:10.1016/j.jbiomech.2004.09.024]
26. Clifford AM, Holder-Powell H. Postural control in healthy individuals. Clinical Biomechanics. 2010; 25(6):546–51. doi: 10.1016/j.clinbiomech.2010.03.005 [DOI:10.1016/j.clinbiomech.2010.03.005]
27. Gage WH, Winter DA, Frank JS, Adkin AL. Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait & Posture. 2004; 19(2):124–32. doi: 10.1016/s0966-6362(03)00037-7 [DOI:10.1016/S0966-6362(03)00037-7]
28. Cavanaugh JT, Guskiewicz KM, Stergiou N. A Nonlinear Dynamic Approach for Evaluating Postural Control. Sports Medicine. 2005; 35(11):935–50. doi: 10.2165/00007256-200535110-00002 [DOI:10.2165/00007256-200535110-00002]
29. Gurfinkel VS, Ivanenko YP, Levik YS, Babakova IA. Kinesthetic reference for human orthograde posture. Neuroscience. 1995; 68(1):229–43. doi: 10.1016/0306-4522(95)00136-7 [DOI:10.1016/0306-4522(95)00136-7]
30. Rougier P-R. What insights can be gained when analysing the resultant centre of pressure trajectory? Neurophysiologie Clinique/Clinical Neurophysiology. 2008; 38(6):363–73. doi: 10.1016/j.neucli.2008.09.006 [DOI:10.1016/j.neucli.2008.09.006]
31. Woodhull AM, Maltrud K, Mello BL. Alignment of the human body in standing. European Journal of Applied Physiology and Occupational Physiology. 1985; 54(1):109–15. doi: 10.1007/bf00426309 [DOI:10.1007/BF00426309]